Frameless stereotactic radiosurgery with linear accelerator-based technology for brain metastases : analysis of the outcomes and risk of brain radionecrosis in 141 patients

Aisin Ibrahim¹, Bernard Fortin, M.D., M.Sc.², Nader Khaouam, M.D.², Alexis Bujold, M.D.², Alma Sylvestre, M.D.², Christian Boukaram, M.D.² ¹M.D. candidate (2019), Faculty of Medicine and Health Science, University of Sherbrooke, Québec, Canada

²Radiation Oncologist, Clinical professor, Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Québec, Canada

Introduction

- Brain metastases (BM) are the most common intracranial tumors in adults.
- Surgery and frame-based stereotactic radiosurgery (SRS) are well-described and effective treatment options, but have issues regarding side effects and patient quality of life.
- Frameless SRS with linear accelerators (LINAC) is a promising technology that doesnt require the use of a rigid head frame.

Objectives

 The aim of this study was to document the clinical outcome and toxicity of frameless SRS with LINAC-based technology for

Methods and Materials

- We realized a retrospective study including patients that were treated with frameless SRS with LINAC-based technology for BM between October 2010 and July 2016.
- Patients were immobilized with individualised mask molded with a thermoplastic pallet.
- Patients were treated with frameless SRS with LINAC-based technology.
- Patients were followed routinely with MRI scans at 3-month intervals or earlier if there was clinical concern.
- Primary endpoints were brain progression-free survival, local control, overall survival and toxicity related to the treatment.
- All survival times were computed with the Kaplan-Meier method.
- All cumulative incidences were computed using competing

BM treated at our institution.

risks analyses.

Figure 1. Cumulative incidence of radionecrosis, local recurrence, distant brain recurrence, and death as first event.

Table 1. Baseline patient characteristics.

	[n]	%
Total patients	141	-
Sex		
Μ	57	40
F	84	60
Age		
Median	62 (range 37-89)	
RPA class		
l	24	17
II	114	81
III	3	2
GPA class		
1	11	8
1.5	45	32
2	32	23
2.5	25	18
3	17	12
3.5	8	6
4	3	2
KPS		
60	3	2
70	63	45
80	34	24
90	35	25
100	6	4

RPA: Recursive Partitioning Analysis, **GPA**: Graded Prognostic Assessment, **KPS**: Karnofsky performance status.

Table 2. Baseline tumor characteristics.

	[n]	%
Total lesions	194	-
# lesions per patient		
1	99	70
2	34	24
3+	8	6
Primary diagnosis		
Lung	87	62
Breast	19	13
Colorectal	11	8
Skin melanoma	9	6
Other	15	11
Tumor localisation		
Frontal	70	36
Parietal	30	15
Temporal	20	10
Cerebellar	41	21
Occipital	22	11
Other	11	6
Tumor diameter (mm)		
Mean	17.84	
Median	15.00	

 Table 3. Baseline treatments' characteristics.

Results

- A total of 194 metastatic lesions in 141 patients were treated in a 69-month interval.
- Baseline patient and tumor characteristics are shown in tables 1 and 2 respectively.
- Most patients (94%) were treated with a single dose of radiation with a median prescribed dose to the PTV of 15 Gy (range 12–24 Gy). Treatment characteristics are shown in table 3 and chart 1.
- The overall survival median was 8.7 months.
- Cumulative incidence of primary outcomes are shown in figure 1.
- At the time of analysis 33 patients were still alive and the median potential follow-up time was 25 months (CI 95% 16.3– 27.9).
- The median time to any brain progression was 15 months.
- Local recurrence as a first event was 25% at one year and 38% at two years.
- Distant brain recurrence as a first event was 18% at one year and 21% at two years.
- Death before any brain event occurred in 31% of patients.
- Cumulative incidence of radionecrosis as a first brain event was of 2% (2 events). A multivariate analysis was performed to

Chart 1. Treatment characteristics.

SRS alone
WBRT + SRS
Sx + SRS
WBRT + Sx + SRS

SRS : Stereotactic radiosurgery, **WBRT** : Whole brain radiotherapy, **Sx** : Surgical resection

	Mean	Median		
SRS dose (Gy)	16.60	15.00		
GTV (cm ³)	6.20	2.91		
PTV (cm ³)	10.25	5.23		
V10 (cm ³)	21.25	14.17		
V12 (cm ³)	12.67	7.81		
IC	1.25	1.22		
IPaddick's	0.82	0.82		
CTV Crease turner velumes DTV Disprises terrested velumes V40/V42 velumes				

GTV : Gross tumor volume, **PTV** : Planning targeted volume, **V10/V12** : volume of tissue receiving more than 10 Gy or 12 Gy, **IC** : Conformity index, **IPaddick's** : Paddick's conformity index.

assess for predictors of radionecrosis, none were found to be statistically significant.

Conclusions

- This retrospective study suggests that Frameless SRS with LINAC technology offers similar survival rates compared to conventional BM treatment while being less invasive and having a better impact on patient comfort.
- Also, this study suggest that Frameless SRS with LINAC technology for BM is safe with a minimal rate of radionecrosis.

UNIVERSITÉ DE SHERBROOKE

Faculté de médecine et des sciences de la santé

